MATHEMATICAL ENGINEERING TECHNICAL REPORTS Invariants Preserving Schemes Based on Explicit Runge–Kutta Methods

نویسندگان

  • Hiroki KOJIMA
  • Takayasu MATSUO
چکیده

Numerical integration of ordinary differential equations with some invariants is considered. For such a purpose, certain projection methods have proved its high accuracy and efficiency, but sometimes they can exhibit instability. In this paper, a new, highly efficient projection method is proposed based on explicit Runge–Kutta methods. The key there is to employ the idea of the perturbed collocation method, which gives a unified way to incorporate scheme parameters. Numerical experiments confirm the stability of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

Geometric Integrators for Classical Spin

Practical, structure-preserving methods for integrating classical Heisenberg spin systems are discussed. Two new integrators are derived and compared, including (1) a symmetric energy and spin-length preserving integrator based on a Red-Black splitting of the spin sites combined with a staggered timestepping scheme and (2) a (Lie-Poisson) symplectic integrator based on Hamiltonian splitting. Th...

متن کامل

Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation

We consider implicit-explicit (IMEX) Runge Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stabilitypreserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge Kutta (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space...

متن کامل

Geometric Integrations for Classical Spin Systems

Practical, structure-preserving methods for integrating classical Heisenberg spin systems are discussed. Two new integrators are derived and compared, including (1) a symmetric energy and spin-length preserving integrator based on a Red-Black splitting of the spin sites combined with a staggered timestepping scheme and (2) a (Lie-Poisson) symplectic integrator based on Hamiltonian splitting. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015